文章编号: 0253-2239(2010)10-2918-05

散斑相关在椭圆高斯光束发散角测量中的应用

黄战华 朱 猛* 蔡怀宇 张尹馨

(天津大学精密仪器与光电子工程学院,天津 300072)

摘要激光束发散角的测量对于激光制导、激光测量有着重要的意义,激光束发散角是激光质量的一个重要参数。 大发散角激光照明在大范围散斑干涉测量中也有着重要应用。基于散斑自相关的方法推导了椭圆高斯光束照明 下的散斑二维尺寸与照明光束参数之间的关系,通过散斑自相关运算直接计算得出接收面上散斑二维尺寸从而测 量出光束有效照明尺寸,根据不同距离的有效照明尺寸确定光束的发散角。采用激光散斑计量光束有效照明半径 的方法有着大范围的光强适用性,无需考虑离轴误差影响。该方法结构简单,对环境光有一定的抑制作用。 关键词 统计光学;激光发散角;散斑相关;散射

中图分类号 O436.1 文献标识码 A doi: 10.3788/AOS20103010.2918

Speckle Correlation Used in Measurement of Elliptical Gaussian Beam Divergence

Huang Zhanhua Zhu Meng Cai Huaiyu Zhang Yinxin

(College of Precision Instrument and Opto-Electronic Engineering, Tianjin University, Tianjin 300072, China)

Abstract Divergent angle of laser beam which used in laser guidance and measurement is an important parameter. Large area illumination of laser is also an important application in large-scale speckle interferometry. The relation between speckle size and elliptical Gaussian laser beam illumination parameter is derived by using speckle auto-correlation, and the effective two-dimensional lighting size at receiving plane is calculated, the divergence according to the lighting sizes at different distances futhermore determined. This device is simply constructed. Using laser speckle auto-correlation metrology methods the dynamic range of laser intensity is enlarged, ignoring the off-axis influence, and environmental light is suppressed.

Key words statistical optics; laser divergent angle; speckle correlation; scattering

1 引 言

激光发散角测量常用的办法有面阵 CCD 法、双 线阵 CCD 法和刀口法等^[1~3]。传统的测量方法对 于大发散角的光束采用成像镜头,对于大功率激光 加入衰减片衰减光强来进行测量。但这些额外的器 件都会对测量带来误差,而对于装配要求也很严格。 当圆高斯光束经过柱面镜或其他像散元件都会形成 椭圆型高斯光束^[4],即振幅衰减到 1/e 处时光斑轨 迹为椭圆,因而计量椭圆高斯光束的发散角有实际 意义。用激光束照射光学粗糙表面或穿过透明散射 体时,都会在空间中形成散斑图样。这是由大量随 机并且具有相互独立的振幅和相位的子波在空间中 叠加形成随机干涉产生的。目前,散斑相关计量已 经发展成为一门重要的计量学科^[5~9]。本文利用散 斑相关计量光束空间分布参数和发散角,采用椭圆 高斯光束照明相位散射体,计算衍射场的散斑相关 距离从而得到照明的有效孔径。

2 自由空间透射散斑自相关 如图1所示,基模椭圆高斯光束在距离束腰平

作者简介:黄战华(1965—),男,博士,教授,主要从事光电信息处理方面的研究。E-mail: zhanhua@tju. edu. cn

收稿日期: 2009-11-12; 收到修改稿日期: 2010-02-10

基金项目:国家科技支撑计划(2007BA000013)资助课题。

^{*} 通信联系人。E-mail: zhumeng@tju.edu.cn

图 1 高斯光束照明自由空间散斑传播光路

Fig. 1 Gaussian beam induced speckle propagation geometry in free-space

面 $x_0 o_0 y_0$ 为 z 处的复振幅为^[4]

$$E(x,y,z) = \sqrt{\frac{w_{0x}w_{0y}}{w_x(z)w_y(z)}} \exp\left\{-\left[\frac{x^2}{w_x^2(z)} + \frac{y^2}{w_y^2(z)}\right]\right\} \exp\left\{-ik\left[z + \frac{x^2}{2R_x(z)} + \frac{y^2}{2R_y(z)}\right] + \frac{i}{2}(\varphi_x + \varphi_y)\right\},$$
(1)

式中 $w_x(z), w_y(z), R_x(z), R_y(z)$ 分别为

$$w_i(z) = w_{0i} \sqrt{1 + \left(\frac{z\lambda}{\pi w_{0i}}\right)^2}, \quad R_i(z) = z \left[1 + \left(\frac{\pi w_{0i}}{z\lambda}\right)^2\right], \quad i = x, y$$
(2)

高斯光束束腰平面为 $x_0 o_0 y_0$,其中 $o_0 B_0 = w_{0x}$, $o_0 A_0 = w_{0y}$,毛玻璃屏入射平面 $x_1 o_1 y_1$ 上的照明孔径为 长轴 $o_1 B_1 = w_x(z)$,短轴 $o_1 A_1 = w_y$ 的椭圆光斑,毛玻璃屏入射面高斯光束振幅分布为 $E(x_1, y_1, z)$ 。出射散 斑场为 $E'(x_1, y_1, z)$,经过自由空间菲涅耳衍射入射到接收平面 XOY 上。

分离出相位项化简(1)式,并分离 x, y 变量得到振幅表达式为

$$E(x_{1}, y_{1}, z) = \sqrt{\frac{w_{0x}w_{0y}}{w_{x}(z)w_{y}(z)}} \exp\left[-\frac{x_{1}^{2}}{w_{x}^{2}(z)}\right] \exp\left[-\frac{y_{1}^{2}}{w_{y}^{2}(z)}\right] \exp\left[-ik\varphi'(x)\right] \exp\left[-ik\varphi'(y)\right], \quad (3)$$

式中 $\varphi'_x = \frac{x^2}{2R_x(z)} + \frac{1}{2}\varphi_x$, $\varphi'_y = \frac{y^2}{2R_y(z)} + \frac{1}{2}\varphi_y$, 分别为 x = y = x 平面内的波前相位。

如果毛玻璃散射屏为相位屏仅改变入射光的相位[10],则毛玻璃出射面光场的复振幅表示为

$$E'(x_1, y_1, z) = \sqrt{\frac{w_{0x}w_{0y}}{w_x(z)w_y(z)}} \exp\left[-\frac{x_1^2}{w_x^2(z)}\right] \exp\left[-\frac{y_1^2}{w_y^2(z)}\right] \exp\left[-ik\varphi''(x)\right] \exp\left[-ik\varphi''(y)\right], \quad (4)$$

式中 φ'' 为随机相位,散斑图样也就是由这种随机相位在接收平面发生干涉产生的。在接收面 XOY 上只考虑光强的自相关函数^[11~14]

$$\Gamma_{I}(\Delta X, \Delta Y) = \overline{I}^{2} \left\{ 1 + \left| \frac{\int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} I(x_{1}, y_{1}) \exp\left[-i\frac{2\pi}{\lambda L}(x_{1}\Delta X + y_{1}\Delta Y)\right] dx_{1} dy_{1}}{\int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} I(x_{1}, y_{1}) dx_{1} dy_{1}} \right|^{2} \right\},$$
(5)

式中 \overline{I} 为接收面平均光强, $I(x_1, y_1)$ 为散射表面出射光强分布函数, $\Delta X = X_1 - X_2, \Delta Y = Y_1 - Y_2,$ 为接收平 面上任意两点 $(X_1, Y_1), (X_2, Y_2)$ 的坐标距离。将(4)式代入(5)式中并由 $I(x_1, y_1) = |E'(x_1, y_1, z)|^2 = \frac{w_{0x}w_{0y}}{w_x(z)w_y(z)} \exp\left[-\frac{2x_1^2}{w_x^2(z)} - \frac{2y_1^2}{w_y^2(z)}\right]$ 得到 $\Gamma_1(\Delta X, \Delta Y)$ 并且利用高斯函数积分结果 $\int_{-\infty}^{+\infty} \exp\left(-\frac{x^2}{2}\right) dx = \sqrt{2\pi}$ 进行归一化,得到

$$\Gamma_{1}'(\Delta X, \Delta Y) = \exp\left\{-\left[\frac{w_{x}(z)\Delta X\lambda}{\lambda L}\right]^{2}\right\}\exp\left\{-\left[\frac{w_{y}(z)\Delta Y\lambda}{\lambda L}\right]^{2}\right\}.$$
(6)

Γ'₁(ΔX,ΔY)为椭圆高斯函数形,所得函数为 ΔX,ΔY为自变量,可见通过自相关函数法所得结 果与采集光强的绝对位置无关,即对于离轴安装带 来的影响可以忽略。通过对散斑相关尺寸(散斑颗 粒二维尺寸)观测即可以求出椭圆高斯光束的照明 孔径为

如图 2 所示,移动散射屏在距离分别为 Z_1 , Z_2 的两个位置采集散斑光场强度并求出归一化的自相 关半径 ΔX_1 , ΔY_1 和 ΔX_2 , ΔY_2 ,代入(7)式得到 Z_1 与 Z_2 对应的照明孔径。

则光束发散角的表达式为

$$\begin{cases} \theta_x = \arctan\left[\frac{w_x(z_2) - w_x(z_1)}{L_1 - L_2}\right] \\ \theta_y = \arctan\left[\frac{w_y(z_2) - w_y(z_1)}{L_1 - L_2}\right]. \end{cases}$$
(8)

图 2 测量光路示意图 Fig. 2 Geometry of measuring system

3 实验结果与讨论

3.1 平截信号的自相关函数

对采集得到信号做单边的平截处理,即原始信号为 *I*(*X*,*Y*),处理后得到光强信号 *I*['](*X*,*Y*)为

$$I'(X,Y) = \begin{cases} 1, & I(X,Y) \ge I_{\rm c} \\ 0, & I(X,Y) < I_{\rm c} \end{cases}$$
(9)

将(5)式改写成

$$\langle I_1 I_2 \rangle = \langle I \rangle^2 (1 + \gamma^2).$$
 (10)

这里满足 $\langle I_1 \rangle = \langle I_2 \rangle = \langle I \rangle$,将(9)式代入到(10)式,得到^[15,16]

(11)式表明,可以通过平截后的信号相关运算 依然能够恢复 γ²,即求取的相关距离仍等于未平截 的强度相关距离。尤其当 I_c 取为〈I〉时,信号平截 前后得到的表达式一致。

利用平截信号的方式得到的结果表明当环境光 满足背景噪声光强均值比散斑光场强度均值小且在 相关距离内可认为恒定值,按(9)式的定义方式,得 到的相关结果与无噪声情况下一致。

环境光噪声对自相关函数的影响如图 3(a)所

图 3 (a)不同光强散斑自相关曲线;(b)环境光噪声影响曲线

Fig. 3 (a) Autocorrelation curve of the speckle with different intensity; (b) curve of environmental-light influence

示,分别引入不同光强与入射角度的背景噪声得到 的自相关函数比较。可见对于满足假设条件的背景 光引入的误差在相关区域可以忽略。

利用平截的方式处理的信号可以在更大范围内 适应测量的要求。图 3(b)为测量光强分别为 0.4, 2.21 和 7.42 mW 时的相关曲线,可以看出,当光强 变化时不需加入任何衰减元件即可得到同样的测量

结果。

3.2 实验结果

实验采用面阵 1024 pixel×1024 pixel单位像 素尺寸 3.4 μ m,CCD 在移动毛玻璃屏前后分别采 集散斑光强图,两次移动距离为 ΔL ,所得光束 X 和 Y 方向宽度如图 4 所示。代入(7)式可以得到照明 孔径大小,发散角计算结果如表 1 所示。

图 4 不同距离处的散斑自相关函数分布 Fig. 4 Speckle correlation function at different distance

表 1 激光束发散角计算结果

Table 1	Experimental	results	of	laser	beam	divergence
---------	--------------	---------	----	-------	------	------------

Radius	Radius	Radius	Radius	Distance	Divergence	Divergence	Error	Error
w_{x1}/mm	w_{x2}/mm	w_{y1}/mm	w_{y2}/mm	$\Delta l \ /\mathrm{mm}$	θ_x/mm	θ_y/mm	E_x / $\frac{0}{10}$	$E_{y}/\frac{0}{0}$
4.69	7.55	4.57	7.53	7.50	20.94	21.53	1.6	1.7
7.55	8.93	7.53	8.89	3.50	21.52	21.23	1.1	0.3
8.93	12.06	8.89	11.92	8.00	21.37	20.74	0.4	2.0

4 结 论

利用椭圆高斯光束照明散射体形成的散斑自相 关特性得到了激光束发散角的结果,散射屏产生散 斑的方法可以对光束起到衰减作用,从而避免了应 用衰减片带来的光束变形,信号的平截处理提高了 测量光源的强度适用范围;抑制了环境光对强度信 号相关的影响,使得测量走出实验室,应用于实际检 测场合。利用相关算法可以只截取部分散斑信号进 行运算,一般情况下截取距离应大于散斑相关长度。 利用截取方法有效的降低了计算时间。

参考文献

1 Li Guohua, Zhao Mingshan. Simple method of measuring the divergence angle of laser beam[J]. J. Optoelectronics • Laser, 1991, 2(1): 13~15

李国华,赵明山. 激光束发散角精确测量的简便方法[J]. 光电子·激光, 1991, 2(1): 13~15

2 Zhang Xianliang, Yan Gaoshi, Cao Yuansheng. Exact measure and error analysis of far field dive rgence angle of He-Ne laser beams[J]. Optoelectronic Technology, 2007, 27(1): 66~68 张宪亮,严高师,曹远生. He-Ne 激光束远场发散角的精确测量 及误差分析[J]. 光电子技术, 2007, 27(1): 66~68

- 3 Chen Jun, Huang Peng. Exact measurement of the far field divergence of the laser beam using CCD camera [J]. High Power Laser and Particle Beams, 1997, 9(4): 551~555
 陈 军,黄 鹏.利用 CCD 准确测量激光远场发散角[J]. 强激光与粒子束, 1997, 9(4): 551~555
- Wei Guanghui, Zhu Baoliang. Optics of Laser Beam [M].
 Beijing: Beijing Industrial Press, 1988. 62~65
 魏光辉,朱宝亮.激光束光学[M].北京:北京工业出版社,
- 1988. 62~65
 5 Yao Kun, Hou Bonhui, Zhang Zengming *et al.*. Measurement of space distruibution of laser Gaussian beam by speckles
- displacement method [J]. *High Power Laser and Particle Beams*, 2000, **12**(2): 141~144 姚 昆, 侯碧辉, 张增明 等. 散斑位移法测量激光高斯光束的空

加 比, 医有杆, 亦指切 寻, 取加位每么肉重颜几间匆儿来切上 间分布[J]. 强激光与粒子束, 2000, **12**(2): 141~144

- 6 Chen Fanxiu, He Xiaoyuan, Lin Baoping. Application of microdigital speckle correlation technique to study mechanical property of advanced thin film material [J]. *Chinese J. Lasers*, 2006, **33**(8): 1104~1108
- 陈凡秀,何小元,林保平.显微数字散斑相关测量新型薄膜的力 学性能[J].中国激光,2006,**33**(8):1104~1108
- 7 Yan Haitao, Wang Ming. Orientation of mouse using digital speckle correlation method [J]. Acta Optica Sinica, 2008, 28(3): 467~471
 - 闫海涛,王 鸣.数字散斑相关方法实现鼠标定位原理[J].光 学学报,2008,**28**(3):467~471

光

- 8 Zhou Changhe. Electronic speckle pattern normalized crosscorrelation method for displacement measurement [J]. Acta Optica Sinica, 1992, 12(5): 432~435
 - 周常河.电子散斑归一化互相关法测位移[J].光学学报,1992, 12(5):432~435
- 9 Wang Jing, Liu Hengbiao, Li Tongbao. Numerical simulation of surface roughness measurement based on angular speckle correlation method using spatial average[J]. Acta Optica Sinica, 2007, 27(2): 259~264

王 婧,刘恒彪,李同保. 空间平均的角度散斑相关粗糙度测量 模拟研究[J]. 光学学报,2007,**27**(2):259~264

- 10 Takeaki Yoshimura. Statistical properties of dynamic speckles [J]. J. Opt. Soc. Am, 1986, 3(7): 1032~1039
- 11 Joseph W. Goodman. Speckle Phenomena in Optics: Theory and Applications [M]. Greenwood Village: Roberts&-Company,

2007. 60~68

报

- 12 Hector J. Rabal, Roberto A. Braga Jr. Dynamic Laser Speckle and Applications[M]. Boca Raton: CRC Press, 2008. 13~16
- 13 Liu Peisen. Foundation of Statistic Speckle[M]. Beijing: Science Press, 1987. 167~170
 刘培森. 散斑统计光学基础[M]. 北京:科学出版社, 1987.

167~170 14 N. Takai, T. iwai, T. Asakura. Correlation distance of dynamic

- speckle[J]. Appl. Opt., 1983, 22(1): 171~173
- 15 Junji Ohtsubo. Intensity clipping correlation of speckle patterns [J]. Appl. Opt., 1985, 24(6): 746~747
- 16 Joseph Marron, G. Michael Morris. Correlation measurements using clipped laser speckle [J]. Appl. Opt., 1986, 25(5): 788~ 789